About 50 results
Open links in new tab
  1. numpy.polyfit — NumPy v2.4 Manual

    numpy.polyfit # numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False) [source] # Least squares polynomial fit.

  2. numpy.polynomial.polynomial.polyfit — NumPy v2.4 Manual

    Several sets of sample points sharing the same x-coordinates can be (independently) fit with one call to polyfit by passing in for y a 2-D array that contains one data set per column.

  3. Polynomials — NumPy v2.4 Manual

    Another major difference between the legacy polynomial module and the polynomial package is polynomial fitting. In the old module, fitting was done via the polyfit function. In the polynomial …

  4. numpy.poly1d — NumPy v2.4 Manual

    Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1., -3., 2.]) This is the same polynomial as obtained by:

  5. numpy.polyfit — NumPy v1.18 Manual

    May 24, 2020 · numpy.polyfit ¶ numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False) [source] ¶ Least squares polynomial fit. Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree …

  6. numpy.polyval — NumPy v2.4 Manual

    >>> import numpy as np >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([76]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), …

  7. numpy.polynomial.polynomial.Polynomial.fit — NumPy v2.4 Manual

    numpy.polynomial.polynomial.Polynomial.fit # method classmethod polynomial.polynomial.Polynomial.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, …

  8. Poly1d — NumPy v2.4 Manual

    NumPy reference Routines and objects by topic Polynomials Poly1d Poly1d # Basics #

  9. Search - NumPy v2.4 Manual

    New value unscaled for option cov in np. polyfit A further possible value has been added to the cov parameter of the np. polyfit function. With cov='unscaled' the...

  10. numpy.poly — NumPy v2.4 Manual

    (If for some reason you have one other point, the only automatic way presently to leverage that information is to use polyfit.) The characteristic polynomial, p a (t), of an n -by- n matrix A is given by …